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abstract

With the rise of Vision Transformer (ViT) architectures and large-scale
online data, foundation models are first pre-trained on massive datasets
to capture general knowledge and then fine-tuned on smaller and specific
datasets for downstream tasks. Recently, parameter-efficient fine-tuning
strategies (PEFTs) have emerged as a promising alternative to full-model
fine-tuning, offering improved accuracy with reduced computational costs
by strategically updating model parameters. However, the robustness
of PEFTs, particularly in security and safety contexts—how the shifts to
using PEFT strategies impact model reliability against adversarial attacks
(security) and under unseen conditions (safety)—remains underexplored.
This thesis bridges the gap between studies on robustness of traditional
training and the emerging application of PEFTs with their limitations in
practice. In this work, we characterize the robustness-accuracy trade-off
space and its sensitivity to PEFT strategies, backpropagation steps, down-
stream tasks in the image domain. We propose a systematic framework
that includes pre-training, fine-tuning, and robustness evaluation, integrat-
ing dynamic analysis and Pareto cstop urves to assess model robustness.
With this framework, we fine-tune 231 models with seven state-of-the-art
fine-tuning methods across six datasets and perform ∼2.1k adversarial
security evaluations and ∼2k out-of-distribution (OOD) safety evaluations.
Our findings indicate that: (1) the adversarial robustness-accuracy trade-
off consistently exhibits early in fine-tuning across PEFT strategies and
downstream tasks; (2) the trade-off in security correlates strongly with
downstream task complexity and similarity to the pre-training dataset
as well as PEFT mechanisms; and (3) key features impacting robustness
in security and safety are fundamentally different—there is no signifi-
cant robustness-accuracy trade-off for OOD data, as the trend of OOD
robustness aligns closely with that of standard accuracy during fine-tuning.
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The thesis emphasizes the need for tailored techniques to preserve (for
security) or enhance (for safety) robustness for PEFT strategies with min-
imal impact on achieving high standard accuracy, providing valuable
insights for researchers and practitioners developing efficient and robust
fine-tuning methods.
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1 introduction

The transformer architecture, introduced in 2017 [2], has become the
state-of-the-art across many fields, including natural language processing
(NLP) and computer vision (CV) [3, 4, 5]. It typically serves as the back-
bone architecture in the pre-training and fine-tuning paradigm [6] where
general knowledge of pre-trained models is transferred to solve specific
tasks through fine-tuning on (often small) downstream datasets. Given
the high and exponentially growing computational, memory, and storage
costs associated with fine-tuning an entire model, new parameter-efficient
fine-tuning (PEFT) strategies [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] have been
replacing traditional fine-tuning methods (e.g., full fine-tuning and linear
probing) by strategically inserting or selecting a small number of param-
eters (less than 5% of the pre-trained model) to be updated. They have
become the de facto approach to achieve higher accuracy with less data
and much lower computational requirements [7, 12, 17].

While these PEFTs aim to reduce computational overheads, they focus
on improving accuracy on benign data. However, the trustworthiness of
machine learning models has been a major concern in the field, especially
when models are increasingly integrated into high-stakes applications
such as healthcare [18], autonomous driving [19], and cybersecurity [20].
It is well-known that models are often vulnerable with previously-unseen
phenomena (i.e., safety under out-of-distribution, OOD) and against ad-
versarial inputs (i.e., security under intentionally crafted perturbations
to cause model misclassification). Although tuning a small portion of
pre-trained model weights can achieve high accuracy on downstream
tasks [7, 12], it is unclear if PEFTs exacerbate the implicit vulnerabilities
models have in the sense of security and safety. Furthermore, previous
studies in traditional training settings (e.g., training from scratch, full fine-
tuning, and linear probing) [21, 22, 23, 24] often stress the importance
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of adversarial training, which adds generated adversarial examples to
training data to improve robustness. However, since adversarial training
requires full control of the pre-training process with expensive computa-
tional costs, most off-the-shelf pre-trained models in practice are standard-
trained [25, 26, 27]. Thus, there is a misalignment between current studies
on robustness and what developers are capable of performing today with
parameter-efficient fine-tuning strategies.

Furthermore, the claim that adversarial examples are intrinsic features
of datasets [22] has motivated our exploration of model robustness in
the pre-training and fine-tuning paradigm. We hypothesize that a pre-
trained model, trained on upstream datasets, is inherently more resistant
to adversarial examples generated on downstream datasets. However, as
various PEFT strategies adapt different parameters to downstream tasks,
key questions arise: at what stages can the model fully exhibit robustness
inherited from the pre-trained parameters, and to what extent does it start
to learn “non-robust” features (i.e., highly predictive yet imperceptible)
from downstream datasets during fine-tuning? Given the fundamental
differences among accuracy, adversarial robustness, and OOD general-
ization robustness, we further hypothesize that these three metrics show
distinct patterns at different stages of fine-tuning, each showing unique
sensitivities to training time, PEFT mechanisms, and downstream tasks.

Thesis Statement: There exist distinct accuracy-robustness
trade-offs in different parameter-efficient fine-tuning settings.

In this work, we propose an approach to characterize the trade-off
space of accuracy, security, and safety for PEFTs in the image domain.
Our framework includes 1) pre-training, 2) fine-tuning, and 3) robustness
evaluation. This provides flexibility for an in-depth, dynamic analysis
of PEFT strategies and their influence on downstream models’ robust-
ness throughout fine-tuning. We select SOTA PEFT strategies from three
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Existence Proof: Is there a 
robustness-accuracy trade-off 

during fine-tuning?

PEFTs Comparison: Do different 
PEFT strategies offer different 

trade-off space? 

On OOD: Do results 
generalize to OOD settings?

Research Focus Measure

Accuracy/Robustness
vs. Time

AUC of Pareto front curves
across PEFT strategies

Results

Adv.
Robustness

Standard Acc.

Time

Acc.

Adv. 
Robustness

Standard
Acc.

𝑃𝐸𝐹𝑇!
𝑃𝐸𝐹𝑇"

OOD
Robustness

Time

Acc.

Security Safety
Standard Acc.

Figure 1.1: Thesis summary table. This table summarizes three main
research questions investigated, the corresponding measurements, and
simplified visualization for results.

popular categories—insertion, selection, and reparameterization—to com-
prehensively explore the PEFT space. Robustness is evaluated in various
settings, including adversarial attacks and distribution shifts, to capture a
wide spectrum of challenges encountered in real-world applications.

In our experiments, we fine-tune 231 models using seven widely-used
fine-tuning methods and evaluate their robustness on six common bench-
marks with around 2.1k adversarial and 2k OOD robustness evaluations.
Adversarial robustness was assessed using projected gradient descent
(PGD) [28], a popular attack algorithm. Our findings reveal that: (1)
across all fine-tuning strategies, model robustness initially increases with
standard accuracy but begins to decline as accuracy continues to rise, high-
lighting an inherent trade-off between adversarial robustness and accuracy
early in fine-tuning; (2) robustness in security contexts is sensitive to both
PEFT mechanisms (i.e., each mechanism produces a distinct accuracy-
robustness Pareto frontier) and downstream tasks (i.e., the trade-off is
strongly correlated to the complexity of downstream tasks with respect to
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the upstream datasets); and (3) robustness in security and safety contexts
exhibits distinct characteristics during fine-tuning, with OOD robustness
aligning closely with standard accuracy without any significant trade-
off. Our key research focuses, their corresponding goals and metrics, as
well as some simplified versions of result visualizations are presented in
Figure 1.1. More details can be found in chapter 4.

The analysis and results help deepen our understanding of how model
robustness is inherited and gained through fine-tuning and offer practi-
cal insights for improving model safety while minimizing the impact on
standard accuracy.
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2 background

In this section, we describe the architecture of Vision Transformers [3],
how parameter-efficient fine-tuning strategies are applied to them, and
previous studies on model robustness.

2.1 Vision Transformer Architecture
The Vision Transformer (ViT) [3] architecture extends the transformer
model [2] from NLP to the image domain in CV. The key component of
both architectures is the self-attention mechanism, which captures global
dependencies and relationships of the training data to show strong perfor-
mance across various tasks.

As shown in Figure 2.1, an image is divided into fixed-size patches, each
of which is flattened into a vector and projected onto a higher-dimensional
space (i.e., embeddings). For each input patch embedding, three matrices
– Value (V), Key (K), and Query (Q) – are computed by Equation 2.1,

V = XWV ,K = XWK,Q = XWQ (2.1)

where X represents the patch embeddings, and WV , WK, and WQ are
learned weight matrices for the V, K, and Q, respectively. The core of the
attention mechanism is the calculation of the attention scores (as shown in
Equation 2.2), which measure the relevance of each patch among others.

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2.2)

The softmax function here converts attention scores into a probability
distribution that determines the contribution of each value vector to the
output. Multi-head attention extends this idea by performing multiple self-
attention operations in parallel. Each attention head processes the input
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	𝐻𝑒𝑎𝑑𝑠
1

Figure 2.1: Vision Transformer Architecture. This is an architecture
visualization of one ViT block.

data differently, enabling the model to focus on different parts of the input
simultaneously and enhancing its ability to capture intricate dependencies
and patterns. After the attention mechanism, the output is passed through
a feedforward neural network (FFN), which includes trainable weights
and locates in the middle of two layer normalizations (LN). As is standard
practice, an FFN layer consists of linear transformations followed by a
Gaussian Error Linear Unit (GELU) activation function, with LN applied
to stabilize embedding dynamics and accelerate the convergence of ViT.

The described mechanism is one basic layer of ViT, which stacks multi-
ple such layers together to build increasingly complex representations of
the input image. The ViT base model used in our experiments consists of
12 layers, and diverse kinds of parameter-efficient fine-tuning strategies
will be applied to different locations (i.e., weights).
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Location Insertion Reparameterization Selection

WQ,WK,WV
FFN and

Activation matrix multiplication binary mask

WO
element-wise

vectors (parallel) Kronecker product Fisher information

multi-head attn - Fastfood transform biases
FFN - - layer selection

Table 2.1: Categorization of state-of-the-art PEFT techniques

2.2 Parameter-Efficient Fine-Tuning Strategies
Full fine-tuning (i.e., updating all model parameters) and linear probing
(i.e., updating only the last classification layer) have been prevalently used
[29, 30] to transfer knowledge of pre-trained models to solve downstream
tasks in computer vision. While parameter-efficient fine-tuning strategies
(PEFTs) have become popular in NLP, a small subset have been adapted to
solve CV tasks [31]. The goal of PEFTs is to achieve the same, if not better
[32], accuracy as full fine-tuning does but with less training data and fewer
trainable parameters for less computational and memory costs. There are
different ways to classify PEFTs—by (1) their underlying approach or (2)
their primary objectives to minimize memory footprint or only storage [32].
In this thesis, we focus on the categorization based on their underlying
mechanism, with which they can be categorized into three groups as
presented below. A detailed decomposition based on this categorization
is shown in Table 2.1. Given there is no standard categorization rule [32],
the PEFTs studied in this thesis and their corresponding categorization
are further customized and discussed in Table 3.1.
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Additive Methods

Additive methods focus on augmenting existing pre-trained models with
newly-introduced parameters or layers and training only the added pa-
rameters. This strategy can largely decrease training time and enhance
memory efficiency by reducing the number of gradients to compute for
the optimizer during fine-tuning.

There are two major categories: adapter-like methods and "soft prompts".
The former [12, 15, 33, 34] inserts standalone modules/adapters, neural
networks of negligible size compared to that of the foundation models.
The formula is shown in Equation 2.3. For example, Adapters [12] first
freeze the original network and then inject the new modules (with specific
structures) to be trained on the downstream task, while [34] proposes a
mixture-of-experts fashion of leveraging multiple adapter modules. The
methods can add the modules to different layers of the pre-trained model.
Conventionally, because of the concentration of information of certain
layers of ViTs, adapter modules are added sequentially after the attention
layer and after the FFN layer, respectively [12].

x← x+ f(xWdown) ·Wup (2.3)

Here, Wdown and Wup down-projects and up-projects the original matrix,
respectively, and f(·) is a nonlinear activation function in between the
projections. A residual connection is used to wrap up the adapter module.

The second major category is called “soft prompts”, which prepend/ap-
pend parameters to the existing matrices and fine-tune only the added
ones. Unlike adapter-like methods, these prepended/appended parame-
ters are not standalone modules but are concatenated with the original
weights. They are called “soft prompt” because these strategies are ini-
tially designed in NLP by prepending trainable parameters to the prompts
which are then fed to a language model during fine-tuning. The same logic
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can be transferred to the image domain. Prefix tuning [8] (denoted in
Equation 2.4) prepends tunable parameters to the Key and Value matrices
of attention layers, while Prompt tuning [14] only prepends trainable pa-
rameters to the input embeddings. The added parameters will be updated
directly through gradient descent during fine-tuning.

headi = Attn(xW(i)
q , concat(T (i)

k ,W(i)
k ), concat(T (i)

v ,W(i)
v )) (2.4)

Here, W(i)
q , W(i)

k , and W
(i)
v are queries, keys, and values of the i-th head,

T
(i)
k and T

(i)
v are two sets of trainable prefix vectors added to the key and

value matrices, and x is the input of the multi-head attention layer.

Selective Methods

Selective methods [11, 17, 35] can also be referred to as “sparse update
methods”. They ignore the model architecture but select parameters based
on either their types or relative importance to various downstream tasks.
For example, for each layer of the pre-trained model, BitFit [17] fine-tunes
only the bias terms of a model, leaving all other weights unchanged.

Reparameterization-Based Methods

Reparameterization-based methods leverage intrinsic dimension (i.e., the
minimum dimension of model weights required for a model to solve
downstream tasks), which is derived from the weights of the pre-trained
network, to minimize the number of trainable parameters. Counterintu-
itively, previous works [7, 10, 36] find that the size of the subspace that
needs to be fine-tuned is smaller for bigger pre-trained models. This prop-
erty makes this type of PEFT strategy more effective with large foundation
models. LoRa [7] (as shown in Equation 2.5) decomposes the weight
matrices of the pre-trained models into a product of two low-rank (much
smaller) matrices, and then adds those two trainable matrices back to the
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attention layers to approximate weight updates. Continuing on this line
of work, instead of using matrix multiplication, KronA [10] proposes to
use the Kronecker product for matrix factorization to further reduce the
number of trainable parameters during fine-tuning.

x←W0x+△Wx = W0x+ s ·WdownWupx (2.5)

Here, W0 and△W are the weights of pre-trained model and the weight
updates, respectively. s ⩽ 1 is a tunable scalar hyperparameter, and
Wdown and Wup are trainable parameters for matrix reparameterization.

2.3 Model Robustness
In this thesis, we study the robustness of models fine-tuned by PEFT
methods from both security and safety perspectives. Adversarial robust-
ness [28, 37, 38], as one of the major s ubareas of machine learning security,
focuses on measuring and enhancing model resilience against adversarial
examples—inputs to models with minute, often imperceptible-to-humans
perturbations that trigger model misclassification. We focus on white-
box evasion attacks and choose PGD, a representative attack algorithm
widely used in security evaluations, for our experiments. In terms of
safety [1, 39, 40], we study models’ natural vulnerabilities, their fidelity
facing domain shifts. Those out-of-distribution shifts are inevitable in
realistic settings where models are deployed, and, thus, it is crucial to
take them into consideration for a more comprehensive evaluation of the
models. Here, we briefly discuss the prevalent adversarial and natural
attacks in the field that we integrated into our evaluation.
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Adversarial Attacks

Instead of updating model weights by minimizing pre-defined loss through
backpropagation during training, white-box evasion attacks freeze model
weights and use similar optimization techniques to update the input with
different objectives—either maximize model loss [28, 37, 41, 42] or min-
imize perturbation require for misclassification [38]. Basic Iterative Method
(BIM) [41] extends the same heuristic of fast gradient sign method (FGSM) [37].
It is an iterative process that follows gradual perturbation steps written as:

xt+1 = Πx+B(xt + αsgn(∇xL(θ, x,y))) (2.6)

where L is the loss function associated with the model and its parameters
θ being attacked, original input x, and label y. Using gradient ascent
with step size α, BIM iteratively generates perturbations while staying
within a predefined perturbation budget B outlined by an ℓ∞-norm. While
project gradient descent (PGD) [28] also uses the iterative method, it applies
Random Restart, wherein inputs are initially randomly perturbed within
an ℓ∞ ball. We refer to the original attack papers for more details.

Out-of-Distribution Shifts

Domain shifts here focus on the shifts of the style and background from
training images to test images, designed to test if the model learns key
features for classes. For example, as a standard domain adaptation dataset,
DomainNet [1] transfers from sketch images to real, clip art, and painting
images of the same class. CIFAR-10 [43] is used as the training dataset
while STL [40] and CIFAR-10.1 [44], which shares a similar data collection
protocol but exhibits a minute distributional shift, are used as test datasets.
Due to the large computational requirement for analyzing the robustness-
accuracy trade-off space throughout the fine-tuning process, we focus on
using DomainNet for our OOD evaluation.
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3 methodology

In this section, we outline the considered threat model in security and
safety settings. While PEFTs are designed to extract and fine-tune certain
knowledge to optimize a model’s standard accuracy on downstream tasks,
we aim to study how updating the knowledge impacts model robustness.
We select representative PEFT strategies in order to characterize the param-
eter space of PEFTs. Furthermore, we explain the rationale of our designed
sensitivity analysis with the presented framework (Figure 3.1) to study
how sensitive the robustness-accuracy trade-off (with both adversarial
and OOD data) is with respect to fine-tuning strategies, the number of
backpropagations, and downstream tasks.

3.1 Threat Model
We consider both security and safety perspectives to evaluate model ro-
bustness with different fine-tuning approaches. A key distinction between
these settings is that, in security, adversaries actively attempt to exploit
model weaknesses, whereas for safety, no attacker is present—robustness
is, instead, tested against distributional shifts that occur in realistic envi-
ronments to measure models’ generalization capability.

For adversarial robustness, we consider the worst-case adversary
through a “white-box" threat model, where adversaries have full access to
the model architecture and parameters to generate perturbations. Specif-
ically, these perturbations are produced by iterative attack algorithms
under some ℓp-norm, which limits the magnitude of the perturbation,
while sufficient to induce model misclassifications, are imperceptible to
the human eye. We consider ell∞-norm in the thesis. For safety robustness,
no targeted perturbations are applied, and test images are sourced from
different domains (e.g., sketches vs. real images) that are different from
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Pre-trained
Model
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Building
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Dynamic Metrics
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Adv. Rob.
OOD Rob.… …
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Figure 3.1: A systematic framework for sensitivity analysis of PEFTs’
robustness and accuracy. A framework to characterize the trade-off space
of PEFT strategies. (1) Select pre-trained models and downstream tasks;
(2) Integrate PEFT modules to the pre-trained model; and (3) Dynamically
evaluate their robustness and accuracy across backpropagations.

the training data, simulating practical distributional shifts.

3.2 The Space of PEFTs
One key challenge in evaluating the robustness of models fine-tuned with
various PEFT strategies is the systematic characterization of the param-
eter space in which they reside. The location of a PEFT strategy in the
parameter space determines the knowledge a model eventually obtains,
which further determines its capability—robustness and accuracy—on
downstream tasks. We probe the space by selecting five SOTA PEFTs from
the previously-mentioned categories (i.e., BitFit from selection, LoRA
and (IA)3 from reparameterization, and Adapter and Compater from in-
sertion). In addition, we study the space by analyzing these strategies
through two key dimensions: the information in the pre-trained models
they extract and the mechanisms they use to fine-tune the extracted infor-
mation. In Figure 3.2, we draw out where PEFT strategies are applied to a
ViT block (left) and the underlying mechanisms they use (right). Note
that the extracted information location and mechanisms remain the same
throughout N ViT blocks. More formally, we derive a table of the PEFT
parameter space we considered (Table 3.1).
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Figure 3.2: Left: A graphical illustration of how five different PEFTs are
applied to one ViT block. Right: Individual PEFT mechanism.

Extracted Information

We study the extracted information, which is contained in model weights
and intermediate representations, based on both its type and location. The
primary difference between parameter-efficient and traditional fine-tuning
strategies is that, instead of fine-tuning all pre-trained model weights,
PEFTs strategically extract pre-trained information by inserting/selecting a
small amount of parameters to be fine-tuned to optimize model’s standard
accuracy. However, what type of information is chosen and where to
choose it vary across PEFTs. By characterizing and probing these two
directions, we study if fine-tuning different information extracted from
pre-trained models could impact model robustness on downstream tasks.

With the selected PEFTs, we observe that there are two types of in-
formation extracted—model weights and input representations. Model
weights are the parameters of the pre-trained model layers (i.e., static),
while input representations are the output of the intermediate layers after
feeding input to the model (i.e., dynamic, depending on the input at run-
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time). It is straightforward for certain strategies such as LoRA [7], which
operates directly on the attention matrices by decomposing them, while
the line is harder to draw for others such as (IA)3 [15], which rescales the
weights (i.e., attention weights and FFN activations) with inserted vectors,
but it is equivalent to rescaling the representations.

Furthermore, both the weights and the representations can be obtained
from different parts of the model (e.g., attention weights and biases).
Among them, attention weights, which the ViT relies on entirely to draw
global dependencies between input and output [2], have been studied the
most in transfer learning for simplicity and parameter-efficiency [7, 12,
45]. We characterize the information extracted based on the commonly
chosen model layers (i.e., attention weights, feed-forward neural layers,
and biases) and the corresponding input representations obtained after
those layers in the first five columns of Table 3.1.

The Space of PEFT
Information Location Mechanism

PEFT
Strategies Attn Rep. FFN Rep. Bias Proj.

Layers
Matrix

Reparam
Element-wise

Mult.
Direct

Update
LoRA • ◦ ◦ ◦ ◦ ◦ • ◦ ◦
IA3 ◦ • ◦ • ◦ ◦ ◦ • ◦
Adapter ◦ • ◦ • ◦ • ◦ ◦ ◦
Compacter ◦ • ◦ • ◦ • • ◦ ◦
BitFit • ◦ • ◦ • ◦ ◦ ◦ •

Table 3.1: The space of PEFT strategies in terms of information location
and underlying mechanisms

Underlying Mechanisms

After the information is extracted from the pre-trained model, differ-
ent mechanisms of PEFTs are designed to update the corresponding pa-
rameters to adapt the model to downstream tasks. We find three main
approaches—1) projection with neural layers: feedforward neural layers
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and layer normalizations are used to down- and up-project the intermedi-
ate representations; 2) matrix/vector computation: specifically, multipli-
cation is used here to rescale the matrices to which it is applied; 3) direct
update: backpropagation is directly applied to update the information
extracted without additional techniques.

We find that these mechanisms are partially related to the category
(i.e., selection, reparameterization, and insertion) of the corresponding
PEFTs. Projection layers are usually inserted to the pre-trained model,
while matrix multiplication are used to reparameterize the original large
matrix to multiple smaller matrices, and selected parameters are usually
directly updated. However, it is worth noting that the mapping is not defi-
nite, one PEFT strategy can combine different mechanisms. For instance,
Compacter [45], an insertion-based method, uses matrix multiplication to
decompose inserted matrices instead of the original weights.

3.3 Sensitivity Analysis for Robustness

Motivation

As shown in Figure 3.1, we propose a framework for systematically analyz-
ing the sensitivity of robustness of PEFT strategies to key factors, including
the parameter space of PEFTs, the number of training updates, and differ-
ent downstream tasks. Despite the rapid emergence of new PEFT methods
and associated libraries, no existing system examines how the relation-
ship between robustness and accuracy evolves during fine-tuning. Our
framework addresses this gap by offering a structured approach to study
it dynamically throughout the fine-tuning process.

Our study shares similarity to previous work on classic phenomenon
of overfitting. Overfitting, as described by [46], involves a divergence
between training and validation/test accuracy: validation accuracy de-
clines as training accuracy continues to improve, reflecting the model’s



17

over-specialization on the training data, including noise and random fluctu-
ations, rather than generalizable patterns. Extensive research has explored
this issue, leading to the development of early stopping methods [47, 48].
Those methods serve as implicit regularizers, improving test accuracy and
reducing computational costs. Similarly, during fine-tuning, pre-trained
models may learn non-robust features from downstream datasets, poten-
tially compromising robustness while training accuracy improves.

However, the relationship between this robustness-accuracy trade-off
and the well established trade-off between test vs. training accuracy re-
mains unclear. Note that the robustness-accuracy trade-off in the PEFT
space is also different from the traditional training schemes such as training
from scratch—while the pre-trained models already have general knowl-
edge on certain downstream concepts, it is not aware of the non-robust
features, which are specific patterns/distributions of downstream datasets
as opposed to the pre-training datasets. Furthermore, it is important to
study how many robustness properties of the few selected features, opti-
mized for standard accuracy on downstream datasets, can be inherited
or gained during fine-tuning. Such insights can lead to more robustness-
aware and efficient fine-tuning approaches.

Tracking Schedule

Measurement frequency and analysis metrics are central to our framework
to effectively capture the robustness-accuracy trade-off space and compare
across PEFT strategies. We initially select training epochs as the standard
monitoring unit to dynamically track model robustness and accuracy.
However, for downstream tasks closely aligned with upstream datasets,
models can often achieve 80% of their converged accuracy and robustness
within the first few epochs. This rapid convergence makes it challenging to
capture nuanced dynamics during the early stages of training, potentially
missing key behaviors due to the sparsity of measurements.
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0-1,000 steps
(every 200 steps)

1,000-3,000 steps
(every 2,000 steps)

3,000-10,000 steps
(every 4,000 steps)

10,000-30,000 steps
(every 6,000 steps)

30,000+ steps
(every 20,000 steps)

Tracking Schedule for OOD

0-700 steps
(every 50 steps)

700-3,000 steps
(every 1,000 steps)

3,000+ steps
(every 6,000 steps)

Tracking Schedule for Adv

Figure 3.3: Tracking schedule for standard accuracy and Adv and OOD
robustness. Designed tracking schedule for efficiently attacking/evaluat-
ing model states during fine-tuning.

# backpropagation steps =
size of the training dataset

batch size (3.1)

To address this, we propose focusing on the progress at the granular-
ity of individual updates rather than full epochs, which aggregate too
much information for certain transfer tasks. While the number of epochs
determines how many rounds to go through the entire training dataset,
the number of backpropagation steps of each epoch (Equation 3.1) is
determined by batch size (i.e., how many images to learn from for one
backpropagation) and the size of training datasets. However, to track ev-
ery backpropagation step can be both computationally expensive and/or
memory-intensive. For adversarial robustness, perturbations are gener-
ated for all test images at each tracking step, incurring high computational
costs with attack algorithms. In contrast, tracking out-of-distribution ro-
bustness involves constantly loading and feeding all test data outside the
training domain into the model, which is memory- and storage-intensive.

Based on trials with different selected tracking intervals, we designed
an efficient tracking schedule for model states during fine-tuning. It is tai-
lored to different types of robustness measurement (shown in Figure 3.3).
This schedule balances computing feasibility with our research need. By
strategically monitoring changes at pre-defined backpropagation steps,
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we achieve finer-grained insights into model behavior.

Pareto Front Curves & AUC

We use Pareto front curves to characterize the robustness-accuracy trade-
off space of different PEFT strategies across backpropagation steps. In
addition, we use area under the curve (AUC) as a metric to quantitatively
compare these trade-off spaces. Pareto-based approaches have been widely
adopted in machine learning to study trade-offs, especially robustness-
accuracy trade-offs, in various contexts [49, 50, 51]. Pareto front curves
are particularly effective because they visually represent the set of optimal
solutions where no objective, such as robustness or accuracy, can be im-
proved without sacrificing the other. In the context of robustness-accuracy
trade-offs, this method enables clear identification of how different strate-
gies perform relative to one another by highlighting strategies that balance
the competing objectives most effectively.

AUC [49, 51] complements this analysis by offering a single scalar
metric to summarize the trade-off space captured by the Pareto front.
Larger AUC values indicate a better overall trade-off, as the curve spans a
broader range of robustness-accuracy pairs. Together, Pareto front curves
and AUC allow for both detailed visualization and concise summarization
of the trade-off space across PEFT strategies.

We employ these two methods to get the optimal robustness-accuracy
Pareto front curves for each PEFT strategy for various downstream datasets.
This will examine whether the hypothesized trade-off phenomenon exists
as models are fine-tuned for different downstream tasks. Further, we
derive their corresponding AUC to compare the trade-off space across
strategies in order to investigate whether and why different strategy offer
different trade-off space.
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4 evaluation

With our framework of model pre-training, building, and fine-tuning with
dynamic sensitivity analysis, we ask three major research questions:

RQ1 Is model accuracy still at odds (as it is in traditional training [52])
with robustness against adversarial examples in the paradigm of
pre-training and parameter-efficient fine-tuning?—How much should
we fine-tune to get a both accurate and robust model?

RQ2 Do different PEFTs offer different combined robustness and accuracy
while all aims to optimize standard accuracy on downstream tasks?

RQ3 Are findings invariant to safety OOD contexts?

We fine-tuned 231 models across 6 datasets (i.e., 5 adversarial robust-
ness benchmark datasets and 6 out-of-distribution benchmark domains)
with 7 fine-tuning strategies (i.e., 5 parameter-efficient fine-tuning strate-
gies and 2 traditional baseline fine-tuning methods) for 3 runs. While
training each model, we evaluate the intermediate model state on average
20 times for adversarial robustness (around 2,100 PGD attacks) and 16
times for OOD robustness (around 2,016 OOD evaluations).

4.1 Experimental Setup
We perform our experiments on twelve NVIDIA A100 GPUs with 40 GB
of memory, with the support of other available GPUs from the Center of
High Throughput Computing [53]. We describe the pre-trained model,
PEFT strategies, datasets, and security and safety measures used below.
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Table 4.1: Configurations of PEFTs based on standard practices

PEFTs Configs Values

Adapter &
Compacter

reduction factor 8
non linearity gelu
locations multi-heads attn, WO

(IA)3 locations WK, WV , FFN
LoRA locations WK, WV , WQ, WO

Pre-trained Models

We use ViT-Base model, pretrained on ImageNet-21k [54] (14 million
images, 21,843 classes) at resolution 224x224 from HuggingFace [25].

PEFTs and Training Configurations

We select five widely-used parameter-efficient fine-tuning strategies—
Adapter [12], Compacter [45], BitFit [17], LoRA [7], and (IA)3 [15]—from
the three categories to probe the parameter space of PEFT, as well as the
two traditional strategies—full fine-tuning and linear probing—as our
baselines. We use AdapterHub library [55] for integrating various PEFT
modules to the pre-trained model architecture. Those module configura-
tions are adjusted based on common practice in solving CV tasks [31, 56],
while certain parameterization is explored as described in Table 4.1. Grid
search is used to find training configurations (i.e., base learning rate -
{1e−4, 1e−5, 3e−5, 5e−5} and base weight decay - {1−e2, 1−e3}, together
with adjustment ratios for each PEFT strategy {1, 10, 5, 10, 2, 2, 3} (as the
order of PEFTs shown in Table 4.2) based on previous literature[7, 12, 17]
for PEFTs and downstream tasks. Due to the size of the OOD dataset, we
set the base weight decay to be 1e− 2 for efficiency. The detailed informa-
tion of PEFTs configurations and optimal training hyperparameters based
on grid search can be found in Table 4.1, Table 4.2, and Table 4.3.
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Table 4.2: Strategy configurations with datasets (Adv)
Fine-Tuning
Methods

Learning Rate / Weight Decay for Adv Exps.
CIFAR10 CIFAR100 CUB200 Caltech256 Stanford Dogs

Full Fine-tune 3e-5/1e-3 5e-5/1e-3 5e-5/1e-3 1e-4/1e-3 1e-4/1e-3
Linear Probe 1e-5/1e-3 1e-5/1e-2 5e-6/1e-3 1e-5/1e-3 1e-5/1e-3
LoRA 5e-4/1e-2 5e-4/1e-2 2.5e-4/1e-2 5e-4/1e-3 5e-5/1e-2
BitFit 1e-5/1e-4 1e-5/1e-3 5e-6/1e-4 1e-5/1e-3 1e-5/1e-3
Adapter 1e-4/1e-3 2e-4/1e-2 2e-5/1e-2 2e-4/1e-2 2e-4/1e-3
Compacter 2e-4/1e-3 2e-4/1e-3 1e-4/1e-3 2e-4/1e-3 2e-4/1e-3
(IA)3 1.5e-4/1e-3 3e-4/1e-2 3e-4/1e-3 3e-4/1e-3 1.5e-4/1e-3

Table 4.3: Strategy configurations with datasets (OOD)
Fine-Tuning
Methods

Learning Rate for OOD Exps.
Clipart Infograph Painting Quickdraw Real Sketch

Full Fine-tune 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Linear Probe 1e-3 1e-3 1e-3 1e-3 5e-4 1e-3
LoRA 5e-4 2.5e-4 5e-4 2.5e-4 5e-4 5e-4
BitFit 1e-3 1e-3 5e-4 1e-3 5e-4 1e-3
Adapter 2e-4 2e-4 2e-4 1e-4 2e-4 2e-4
Compacter 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
(IA)3 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Benchmark Datasets

We use six different datasets in our experiments in order to cover (1) a
wide range of image categories—both coarse classes (e.g., birds, dogs, cars,
etc.) and specific species within one class (e.g., 200 species of birds), (2)
a common attack algorithm, PGD, for adversarial robustness evaluation,
and (3) a standard safety evaluation benchmark. We provide a summary
of these datasets in Table 4.4 and detailed descriptions below.
Adversarial Robustness
CIFAR10. CIFAR10 [44] is a dataset for image classification. It has been
extensively used as a benchmark in security and safety machine learning
literature. CIFAR10 consists of 10 classes, with 6,000 images per class (5,000
training and 1,000 test images).
CIFAR100. CIFAR100 [57], similar to CIFAR10, has 100 classes, with 600
images per class (500 training and 100 test images). Those 100 classes
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Fine-tuning datasets
Robustness

Adversarial Out-of-distribution(α = 0.25, ϵ = 1, step=15)
CIFAR10

PGD applied on test set

-
CIFAR100 -
Caltech256 -

CUB-200-2011 -
Stanford Dogs -

DomainNet - clip art, info graph,
parinting, quick draw, real

Table 4.4: Datasets and robustness measures

have their own "fine" label as their class and are also grouped into 20
superclasses as their "coarse" label.
Caltech256. Caltech256 [58] contains 256 classes with a total number of
30,607 images. It claims to have improved image qualities for machine
learning tasks by, for example, avoiding image rotation and increasing the
minimum number of images in any class from 31 in Caltech101 [59] to 80.
We only use RGB images from the dataset while getting rid of grayscale
images for our experiments because the processor of the pre-trained model
expects input images to have three channels.
CUB-200-2011. CUB [60] contains 11,788 images of 200 bird species. Dif-
ferent from other datasets, it contains images from only one of the coarse
classes of ImageNet-21k. As a standard adversarial machine learning
benchmark, it is also helpful to test the cases where the model is pre-trained
on general knowledge but fine-tuned on more fine-grained information.
Stanford Dogs. Stanforddogs [61], similar to CUB, is another fine-
grained categorization classification problem for machine learning models.
It contains 22,000 images of 120 breeds of dogs. As a standard benchmark,
it is also used to measure models’ adversarial robustness.
OOD Robustness
DomainNet. DomainNet [1] is a standard domain adaptation dataset. It in-
cludes six different domains, including clipart, infograph, painting, quick-
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Figure 4.1: PGD loss convergence plot during attacking. It is one of the
attack loss curves on CUB200 dataset with full fine-tuning in order to
verify the loss is converging.

draw, real, and sketch. We fine-tune the pre-trained model on a single
domain and test it on other domains to get the model’s fidelity on different
distributions of images.

Adversarial Attack Algorithms.

While OOD robustness is measured directly with images from domains
which are different from the training domain, robustness against adversar-
ial attacks is measured by attacking a model with generated adversarial
examples using a selected attack algorithm. We use a widely-regarded
state-of-the-art white-box evasion attack algorithm PGD to craft adversarial
examples with the test datasets of the downstream tasks. Details of the
attack algorithms and variables are described in Section 2.3.

PGD uses a clipping method with a hyperparameter ϵ to restrict the
amount of perturbation δ added. We explore a range of budget values ϵ
(i.e., 1, 2, ..., 8/255) and study the percentages of the budget that PGD actu-
ally consumed δ/ϵ. We choose ϵ = 1/255 [62], step size α = 0.25/255, and
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the number of steps to be 15. We verify that the attack loss is converging
for around 95.6% at step 15 as shown in Figure 4.1.

4.2 Trade-off Between Accuracy and Robustness
Our study on the trade-off between standard accuracy and robustness
within the paradigm of pre-training and parameter-efficient fine-tuning is
motivated by prior research on similar phenomena in traditional training
settings (i.e., training models from scratch). Those studies have claimed
that robustness is at odds with accuracy both empirically [52, 63] and
theoretically [52, 64, 65]. Previous work [22] attributes adversarial exam-
ples to the presence of "non-robust" features—patterns that, while highly
predictive for standard accuracy, are imperceptible to humans—which
models extract from training data distribution. Given the fundamental
assumption in computer vision that training and test data are drawn from
the same distribution [66, 67], this reliance on non-robust features explains
why model robustness on test data often degrades as models optimize for
standard accuracy on the corresponding training data.

However, with the advent of transfer learning and the adoption of
PEFT strategies, the fundamental assumption of prior studies no longer
holds. In this paradigm, upstream pre-training datasets often differ sig-
nificantly (e.g., classes/lables, domains, sizes, etc.) from the downstream
data on which models are fine-tuned and evaluated. This shift necessitates
a reassessment of the trade-off between accuracy and robustness. We
hypothesize that the trade-off phenomena still exist but exhibit differently:
pre-trained models initially are more resistant to adversarial examples
generated on downstream datasets. As fine-tuning progresses and mod-
els are adapted more to downstream data, their robustness peaks and
subsequently declines. Since PEFTs only update a small portion of the
pre-trained model, how much robustness can be inherited and/or gained
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Figure 4.2: The trend of training standard accuracy (blue), test standard
accuracy (green), and adversarial robustness on test dataset (red) across
the number of backpropagation steps on Caltech256. PGD robustness
reaches its peak and drops at an early stage of training, while both training
and test clean accuracy keep increasing and plateau in the end.

and how much non-robust features are exploited for standard accuracy
throughout training are important to be investigated for better practice.
Our experiments described below are designed to answer those questions.
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Experimental Results

We observe a consistent robustness-accuracy trade-off emerging early dur-
ing fine-tuning across all experimental settings, which include 5 PEFT
strategies, 2 baseline methods, and 5 datasets. We conduct a dynamic sensi-
tivity analysis with the designed tracking schedule (Figure 3.3) integrated
into our experimental pipeline (Figure 3.1). For example, Figure 4.2 shows
results on Caltech256 with BitFit, Adapter, LoRA, and full fine-tuning
(complete results in Section 8.1). During fine-tuning, training and test ac-
curacy increase exponentially from ∼0% to ∼100% and ∼90%, respectively,
converging within 1,000 steps. In contrast, PGD robustness exhibits a peak
of 25% around step 400 before declining to ∼10% at convergence.

The turning points on the robustness curves prove the existence of
the trade-off and strongly suggests that models begin to learn non-robust
features early in the fine-tuning process. While these features improve stan-
dard accuracy, they also introduce vulnerabilities that reduce robustness.
The initial increase in robustness before these turning points, coupled with
the steep rise in standard accuracy, indicates that PEFT efficiently adapts
pre-trained knowledge and newly introduced parameters to downstream
datasets. This process effectively transfers both standard knowledge and
robustness from the pre-trained models. Notably, the corresponding high
standard accuracy observed at the peak of model robustness suggests a
promising direction: accelerating the learning of robust and useful features
before the peak while constraining or regularizing the emergence of non-
robust yet predictive features afterward could preserve more robustness
with minimal impact on standard accuracy.

Furthermore, we analyze the robustness-accuracy trade-off from the
training curves by focusing on the behavior around the turning point,
restricting the standard accuracy to above 50%. As shown in Figure 4.3,
the scatter plots for Caltech256 illustrates a distinct trade-off with each
dot corresponding to a specific timestamp (i.e., backpropagation step) for
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Figure 4.3: Trade-off visualization between standard accuracy and ro-
bustness for Caltech256. The dots are corresponding to different time
stamps during training (from bottom left to upper right to upper left as
time goes on).

three runs). Early in training, the models show low accuracy and robust-
ness, with points clustered in the bottom-left corner. Over time, the points
move upward and to the right, indicating simultaneous improvements
in standard accuracy and robustness. However, as training progresses,
robustness peaks and then declines, while accuracy continues to increase,
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with points shifting toward the top-left corner. This trend is particularly
evident in BitFit and full fine-tuning, where standard accuracy exceeds
90% at convergence, but robustness drops significantly—approximately
15% (from 35% to 20% and from 25% to 10%, respectively). In compari-
son, other methods exhibit smaller declines in robustness when standard
accuracy surpasses 90%. These findings highlight that PEFT strategies
targeting information in or around attention layers achieve a better balance
between robustness and accuracy compared to methods that fine-tune
all weights or only the biases, while the latter methods achieve higher
robustness at its peak.

4.3 Pareto Front Curves in the Trade-off Space
After analyzing the consistent robustness-accuracy trade-off phenomenon
across our experimental settings, we further ask how sensitive these
robustness-accuracy trade-offs are to different downstream tasks and fine-
tuning strategies while focusing only on the Pareto front curves in the
trade-off space. In terms of downstream task complexity, we consider both
the number of classes and features and the similarity between classes of
downstream tasks and those of the upstream datasets.

First, we derive the Pareto curves from Figure 4.3 by identifying the
set of points that represent optimal trade-offs between standard accuracy
(y-axis) and PGD adversarial robustness (x-axis)—a point is considered
optimal if no other point has higher accuracy and robustness simultane-
ously. This approach effectively captures the trade-off frontier for each
fine-tuning strategy. After constructing the Pareto front curves for each
method, we aggregate them for each dataset. The resulting curves for
Caltech256, CUB200, CIFAR10, and CIFAR100 are shown in Figure 4.4.
Note that the ranges of robustness vary across downstream tasks. In order
to focus on comparing Pareto front curves across different PEFT strategies,
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Figure 4.4: The Pareto front curves of the trade-off between standard ac-
curacy and robustness on Caltech256, CUB200, CIFAR10, and CIFAR100.
The Pareto front curves of different PEFT strategies reside in different
locations in the trade-off space.

we set different x-axis values for each downstream dataset.
The trends observed in the plots reveal significant differences across

downstream datasets. For Caltech256 and CUB200, the trade-offs are more
pronounced, with robustness peaking before sharply declining as stan-
dard accuracy approaches the final 10% of its convergence. In comparison,
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CIFAR100 exhibits a more gradual trade-off, characterized by smaller gra-
dients (in absolute values). CIFAR10 demonstrates the smallest and most
gradual trade-off, with robustness remaining relatively stable as accuracy
improves by the last 2%. We notice that the 10 classes of CIFAR10 are a
subset of ImageNet21k classes [54], while CUB200 benchmark requires a
model to distinguish 200 bird species, all within a single high-level class
("Bird") in the ImageNet21k hierarchy. This suggests that more complex
and detailed tasks require models to learn intricate features that may intro-
duce vulnerabilities and not align with adversarial robustness. The trend
here highlights that the robustness-accuracy trade-offs strongly correlate
with the complexity of the downstream tasks and their resemblance to the
upstream pre-training dataset.

cifar100 cifar10 stanforddogs caltech256 cub200
BitFit 0.1033 0.2112 0.0762 0.3311 0.1447
Adapter 0.0536 0.1205 0.0510 0.2141 0.0722
LoRA 0.0703 0.1406 0.0633 0.2299 0.1168
Compacter 0.0583 0.0882 0.0891 0.3394 0.1467
IA3 0.0462 0.0783 0.0540 0.3108 0.1292
LP 0.0286 0.0599 0.0166 0.2441 0.0769
Full FT 0.0436 0.1103 0.0542 0.2579 0.0933

Table 4.5: Area under the curve (AUC) of the Pareto front curves

Furthermore, we examine the sensitivity of different parameter-efficient
fine-tuning (PEFT) strategies by computing the area under the Pareto front
curves (AUC), as summarized in Table 4.5. BitFit consistently achieves
the highest AUC for CIFAR10 (∼0.21) and CIFAR100 (∼0.10), indicating
superior robustness-accuracy trade-offs for these datasets. For Stanford
Dogs, Caltech256, and CUB200, Compacter outperforms other methods
with AUC values of 0.0891, 0.3394, and 0.1467, respectively. These results
suggest that BitFit excels in less complex datasets, whereas Compacter is
more suited to more complex datasets, such as Caltech256, which require
more nuanced feature extraction. BitFit’s strong performance on CIFAR
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datasets can be attributed to their resemblance to ImageNet21k, where
adapting only the bias terms effectively inherit pre-trained features and
robustness. In contrast, datasets such as Stanford Dogs, Caltech256, and
CUB200 require more detailed feature adaptation. Here, Compacter’s
inserted modules with low-rank reparameterization, which focus on in-
termediate representations after both attention layers and FFNs, enables
effective knowledge transfer from upstream pretraining while simultane-
ously adapting to downstream tasks. This allows Compater to achieve a
better balance between robustness and accuracy.

Notably, linear probe and full fine-tune underperform across nearly all
datasets, with the lowest AUC values for CIFAR100 (0.0286 and 0.0436)
and CUB200 (0.0769 and 0.0933). This indicates that fine-tuning all param-
eters or freezing almost all layers introduces instability in managing the
robustness-accuracy trade-off, especially for more challenging or detailed
datasets like CUB200.

This analysis supports our hypothesis that robustness-accuracy trade-
offs are sensitive to both downstream task complexity and fine-tuning
strategies. It underscores the importance of aligning different PEFT strate-
gies (i.e., information extracted and their underlying mechanisms) with
the complexity and characteristics of downstream tasks to achieve optimal
balance between robustness and accuracy.

4.4 On Out-of-Distribution Robustness
In this section, we investigate RQ3—whether the findings from studying
adversarial robustness generalize to model safety in real-world out-of-
distribution (OOD) scenarios. For OOD robustness, the "non-robust"
features exploited by adversarial attack algorithms, which attribute to the
robustness-accuracy trade-off phenomena in adversarial settings, are ab-
sent. Instead, OOD robustness depends on a model’s ability to generalize
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Figure 4.5: The trend of training standard accuracy (blue), test standard
accuracy in the training domain (green), and OOD robustness in other
domains (red) across the number of backpropagation steps. The results
of two training domains—clip art and real images—from DomainNet [1]
are shown here.

beyond the training distribution, which we hypothesize may lead to dif-
ferent behaviors in the pre-training and fine-tuning paradigm compared
to adversarial robustness. To analyze this, we track OOD robustness and
standard accuracy throughout training, as showing in Figure 4.5 (complete
results can be found in Section 8.2).

Unlike the adversarial robustness trends in Figure 4.2, we observe
no substantial decline in OOD robustness after it peaks. Both training
and in-domain test standard accuracy (blue and green curves) improve
steadily, and once converged, remain stable. However, OOD robustness
(red curves) initially improves with training steps but plateaus at lower
values compared to standard accuracy. Note that both in-domain test
standard accuracy and OOD robustness decline slightly after convergence.
This, as opposed to a big decrease on robustness while the standard accu-
racy still increases, can be explained by the traditional overfitting to the
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Figure 4.6: A heatmap of the highest OOD robustness during training
across 6 domains.

training dataset. For the "real" training domain (i.e., which is the closest
to the upstream pre-training dataset distributions), OOD robustness con-
verges significantly below in-domain standard accuracy, highlighting the
challenge of generalization to other domains.

This behavior contrasts with adversarial robustness, where training on
the training data after a certain point often causes robustness to deteriorate
after reaching its maximum. We explain this phenomenon by that OOD
robustness relies more on learning transferable features applicable across
distributions, which are less sensitive to overfitting. In adversarial settings,
however, robustness is reduced by some specific low-level non-robust features
from training distributions that may be beneficial to accuracy optimization.

Furthermore, we examine whether OOD robustness is sensitive to dif-
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ferent PEFT strategies or training domains. As shown in Figure 4.6, the
domains on the y-axis of the heatmap are the domains that the models
are fine-tuned on with corresponding PEFT strategies or traditional fine-
tuning methods (listed on the x-axis of the heatmap). The values indicates
the highest OOD robustness on images outside of the fine-tuning domain
models achieved during fine-tuning. Note there is a slight decrease of
OOD robustness as the models are fine-tuned. Results of the converged
OOD robustness can be found in Section 8.2. We observe distinct pat-
terns in robustness across both fine-tuning methods (i.e., mainly between
PEFTs and traditional fine-tuning methods) and training domains. Linear
probing consistently yields the lowest OOD robustness scores (61%±5%)
across all domains, while full fine-tuning demonstrates superior robust-
ness (73%±2%). Notably, the "real" domain exhibits substantially lower
robustness scores (64%±5%) compared to other domains such as "info-
graph" (0.73%±4%) and "quickdraw" (0.72%±3%). This phenomenon can
be attributed to the relatively more significant distribution shift of domains
other than "real" from the pre-trianing dataset. Additionally, OOD robust-
ness scores for all training domains are consistent across the five different
PEFTs with ∼0.03 standard deviation, suggesting the parameter-efficient
strategies can support OOD generalization to a similar degree.

In summary, these empirical results suggest that while adversarial
robustness and OOD robustness both measure capabilities of models fine-
tuned by different PEFTs on images outside their standard test datasets,
they are driven by different underlying logics. OOD robustness empha-
sizes generalization across distributions and has trends aligning well with
those of standard accuracy, whereas adversarial robustness focuses on spe-
cific perturbations and is in conflict with standard accuracy after certain
point of fine-tuning process. This finding has important implications for
designing fine-tuning recipes (i.e., both mechanisms and training proce-
dures) that are both safe and robust in real-world applications.
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5 discussion & limitations

The key focus of this thesis is to explore how the shift to using parameter-
efficient fine-tuning strategies impact the robustness-accuracy trade-off
space. This is motivated by that, based on the literature in the field for the
recent three years, people have been designing new PEFTs for higher accu-
racy and performance (see chapter 6) but with little attention to integrating
them with previously proposed approaches to improve robustness of the
transfer learning pipeline, not to mention studying on how each different
PEFT techniques differ in robustness, especially, the robustness-accuracy
trade-off space, in security and safety settings. Furthermore, adversarial
training has been proposed to be crucial for achieving higher robustness,
while it is highly computational expensive and is not integrated to most
off-the-shelf pre-trained models. We intend to bridge these gaps and come
up with practical recipes/recommendations by evaluating the robustness-
accuracy trade-off throughout the fine-tuning process with state-of-the-art
PEFTs. We focus on the CV domain for this work, but we want to explore
and extend the framework to other domains such as network intrusion
detection and malware detection in the future. Some interesting directions
and limitations are discussed below.

5.1 Defining the Space of PEFTs
We acknowledge the size of the space of parameter-efficient fine-tuning
strategies. In order to probe the PEFT space and study how different com-
ponents affect robustness-accuracy trade-offs, we have to take parameter-
efficient fine-tuning strategies, training schemes, and their application
domains into consideration.
PEFT Strategies. As mentioned before, there are two key dimensions of
PEFTs: information extracted and underlying mechanisms. In our experi-
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ments, we study and vary five representative state-of-the-art PEFTs from
three major categories together with full fine-tuning and linear probing
to probe the space. However, we are aware that there are new strategies
being proposed and could be integrated into our experimental pipeline in
the future. Furthermore, there are many other factors to be considered,
such as the number of trainable parameters and combinations PEFT strate-
gies. Compacter is the only hybrid strategy that we considered in the
experiments, and we plan to integrate more in the future.
Training schemes. Two stages of training are relevant here—(1) train-
ing the pre-trained models and (2) adapting the pre-trained model with
PEFTs during fine-tuning. We use the ViT-Base model from Hugging-
Face, which is trained using supervised learning on ImageNet21k, and we
leave CLIP models (Contrastive Language-Image Pretraining) which uses
self-supervised learning to future work in order to see if the same trend
applies to different pre-training schemes. It is worth noting that CLIP
models show similar results as those of supervised-trained models based
on other literature [31, 56]. In terms of fine-tuning schemes, we would
like to extend this work with customized adversarial training integrated
to study its impact on the trade-off space.
Domains. PEFT strategies are typically applied to models with common
architectures, such as transformer-based models, whose key attention
components are consistent across domains like CV, NLP, and speech recog-
nition. This makes our experimental framework more adaptable to differ-
ent domains. However, the tasks across these domains (i.e., variations in
data formats, sizes, and objectives) differ significantly. Given that model
robustness is closely related to task complexity, as our findings suggest, it
is crucial to consider these domain-specific differences while studying the
balance between model accuracy and robustness. We leave adapting our
framework for applications across various domains to future work.
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5.2 Adversarial Training
Adversarial training has been extensively studied [28, 38] and is recog-
nized as a crucial component for pre-training models intended for achiev-
ing high robustness on downstream tasks [21, 22, 23, 24]. However, as
discussed in the thesis, the high computational cost associated with adver-
sarial training often makes it impractical for most off-the-shelf pre-trained
models, which are typically trained without adversarial methods. This
limitation motivates our study on robustness-accuracy trade-offs using
standard-trained pre-trained models. In comparison, incorporating ad-
versarial training at the fine-tuning stage offers a promising alternative.
During fine-tuning, only a small percentage of a model’s parameters are
updated using a relatively small dataset, which tremendously reduces the
computational burden of adversarial training. Our future work aims to
explore more efficient methods for integrating adversarial training with
PEFTs.

5.3 Security & Safety Measures
Moreover, we consider robustness in both security and safety settings
for PEFTs. There is a diverse range of measures in terms of adversarial
attacks and domain shifts. For adversarial robustness, we used one of the
representative white-box evasion attack algorithms, while other ones can
be easily integrated into our pipeline to assess how attack-dependent the
model robustness is. Similarly, corrupted images can be used to extend
the study on model safety robustness.
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6 related work

We discuss two main lines of related work here: (1) robustness of tradi-
tional transfer learning pipelines before the emergence of PEFTs, which
evaluates and introduces new training schemes or architectural designs
to improve the robustness of downstream models, and (2) advancement
of hybrid PEFT methods, which explores the PEFT space by studing core
components of the strategies for higher accuracy and less memory and
computational requirements. However, as discussed, there is an under-
explored gap between these two parallel lines of work—how does the
advancement and limitations of the new PEFTs with various core mecha-
nisms and transfer learning recipes impact robustness in practice.

6.1 Robustness of Traditional Transfer Learning
There are two crucial directions on the robustness of the traditional trans-
fer learning pipeline—the pre-training phase and the fine-tuning phase.
We focus on the latter here. In order to preserve the gained robustness of
the pre-trained models during fine-tuning, researchers have introduced
multiple branches of the model (several neural networks side-by-side)
which are trained jointly with/without the same objective functions with
pre-defined influence on each other. For example, TWINS [24] uses an
adaptive net which is interconnected with the frozen net via batch nor-
malization layers. Using low-rank adaptation, AutoLoRa [23] optimizes
natural objective with a low-rank branch while optimizing adversarial
objective with a standard feature extractor. In addition, [68] improves
the learning rate scheduler to reduce overfitting induced by adversarial
training during fine-tuning. However, to the best of our knowledge, there
is no study focusing on evaluating, analyzing, and improving adversarial
robustness of various PEFTs, not to mention the safety perspective of the
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strategies. In this thesis, we extend the robustness metrics used for the
traditional transfer learning pipeline.

We consider [56] as a closely related work, which starts to study the
adversarial robustness of some PEFT methods and proposes a robustness-
centered initialization technique for adversarial fine-tuning. However, they
do not study how various PEFTs impacts the robustness-accuracy trade-off
space, nor do they consider the safety perspective of the strategies.

6.2 Hybrid PEFT Methods
After the wide adoption of the PEFT strategies discussed previously, there
are hybrid methods that study the PEFT space and employ a variety of
approaches to combine strategies to further enhance model accuracy with
lower computational costs. For example, UniPELT [69] decomposes LoRA,
Prefix-tuning, and Adatpers approaches into submodules and employs a
gating mechanism to activate those PEFT submodules depending on input
data and given tasks. Improving on the basic structure of the Adapter
modules, Compacter [16] uses Kronecker products (a reparameterization
technique) and shared weights to further reduce the size of the modules,
which are then inserted into the original network. Another recent work [9]
proposes the S4 design space, with which they group pre-trained model
layers and assign different PEFT techniques to them for combination.

While these hybrid approaches explore the space of PEFT methods and
their application schemes from different directions, they only use accu-
racy and computing resources as their evaluation metrics. No robustness
impact is studied for the space, especially in the computer vision domain
(after [31] adapt the standard PEFT methods from NLP to CV). We plan
to extend our framework to include these hybrid methods in the future.
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7 conclusion

In this thesis, we explored the robustness-accuracy trade-off space of
parameter-efficient fine-tuning strategies, addressing the misalignment
between traditional transfer learning robustness studies and the practical
robustness challenges of emerging PEFTs in security and safety contexts.
We developed a systematic framework to decompose the training pipeline
into pre-training, fine-tuning, and robustness evaluation phases, using
adversarial examples and out-of-distribution data for dynamic assessment.
Through extensive experiments, we fine-tuned and evaluated 231 models
with 7 SOTA fine-tuning strategies across six datasets, performing over
4k robustness tests and analyzing their Pareto frontier curves. Our study
first examined whether the robustness-accuracy trade-off persists in the
pre-training and PEFT paradigm, and then analyzed the trade-off from
two perspectives: (1) its sensitivity to PEFT strategies, backpropagation
steps, and downstream tasks in adversarial settings, and (2) whether the
findings extend to generalization robustness with OOD data.

Our results show a consistent trade-off between adversarial robust-
ness and standard accuracy at an early stage of fine-tuning across PEFT
strategies and downstream tasks, but no significant trade-off in safety
contexts. Moreover, the complexity and characteristics of downstream
tasks emerge as critical factors in designing effective PEFT techniques
and training recipes to achieve an optimal balance between robustness
and accuracy. Importantly, security and safety robustness rely on distinct
features of models, underscoring the need for independent evaluation to
ensure comprehensive robustness assessments. This study provides action-
able insights into designing and applying parameter-efficient fine-tuning
strategies and their training recipes, offering guidelines for practitioners
to enhance model robustness in both security and safety contexts while
minimizing the compromise of standard accuracy.



42

8 appendix

Here, we present complete empirical results on our three research ques-
tions across seven fine-tuning strategies and six benchmark datasets.

8.1 Training Curves with Adversarial
Robustness

Full results of the trends in standard accuracy and adversarial robust-
ness during training and testing (across the number of backpropagations)
are shown in Figure 8.1. Models are adapted by seven fine-tuning strate-
gies on five datasets—Caltech256, CIFAR10, CIFAR100, CUB-200-2011, and
Stanford Dogs. The trends are mostly consistent across all datasets and
fine-tuning strategies as discussed in Section 4.2. Note there is an anomaly
increase for Compacter on Caltech256 at step 3000, we attribute this to an
artifact issue and will update the results.
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Figure 8.1: The trend of training standard accuracy (blue), test standard
accuracy (green), and adversarial robustness on test dataset (red) across
the number of backpropagation steps on five datasets. PGD robustness
reaches its peak and drops at an early stage of training, while both training
and test clean accuracy keep increasing and plateau in the end.
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8.2 More Results on OOD Robustness

Training Curves

Full results of the trends in standard accuracy and OOD robustness during
training and testing (across the number of backpropagations) are shown
in Figure 8.2. These results span six distinct domains—clip art, infograph,
painting, quick draw, real, and sketch—as described in DomainNet [1].
The observed patterns are consistent with the discussion in Section 4.4.

Interestingly, there are instances where robustness in OOD test data
surpasses training or test accuracy. This phenonmenon can be attributed to
the domain of the pre-training data. The model is pre-trained on ImageNet-
21k, which predominantly contains real images, where domains like info-
graph differ significantly. Even when the model is fine-tuned on infograph
images, this fine-tuning may not provide sufficient detail for complete
adaptation. As a result, the model may still regard real images as "in-
domain". Thus, in the pre-training and fine-tuning paradigm, true OOD
robustness should be evaluated on domains absent from both the pre-
training and fine-tuning datasets.
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Figure 8.2: The trend of training standard accuracy (blue), test standard
accuracy in the training domain (green), and OOD robustness in other
domains (red) across the number of backpropagation steps. The results
of six training domains are shown here.
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Figure 8.3: A heatmap of the converged OOD robustness towards the
end of the fine-tuning phase across 6 domains.

Converged OOD Robustness

The heatmap (Figure 8.3) shows results of OOD robustness after it con-
verges at the end of fine-tuning. The pattern observed is consistent as it is
discussed in Section 4.4.
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