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INTRODUCTION METHODS
Implication of Fine-Tuning on Robustness Empirical Framework
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Parameter-Efficient Fine-Tuning Decomposition

T We decompose fine-tuning strategies

J, along two key dimensions: 1) the
type of information extracted and 2)
the mechanism used to extract
information.

|
:

* Fine-tuning becomes the standard practice to adapt pre-trained
(upstream) model to downstream tasks.

e Risks of machine learning in real-world deployment: security
(adversarial attacks) and safety (natural out-of-distribution data).

))) We systematically evaluate how the
trade-off between robustness and
accuracy change continuously
throughout fine-tuning.

 The assumptions of existing studies on robustness are not applicable to
the paradigm of fine-tuning.

 We hypothesize that the upstream-downstream distribution shifts
directly affect robustness inheritance, gain, and loss.

EVALUATION TAKEAWAYS
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RQ1: How does adversarial robustness evolve during fine-tuning: task complexity affect the optimal trade-offs?
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: phenomena leads to a steeper Pareto frontier.
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